Abstract

SUMMARYIn photovoltaic (PV) double‐stage grid‐connected inverters a high‐frequency DC–DC isolation and voltage step‐up stage is commonly used between the panel and the grid‐connected inverter. This paper is focused on the modeling and control design of DC–DC converters with Peak Current mode Control (PCC) and an external control loop of the PV panel voltage, which works following a voltage reference provided by a maximum power point tracking (MPPT) algorithm. In the proposed overall control structure the output voltage of the DC–DC converter is regulated by the grid‐connected inverter. Therefore, the inverter may be considered as a constant voltage load for the development of the small‐signal model of the DC–DC converter, whereas the PV panel is considered as a negative resistance. The sensitivity of the control loops to variations of the power extracted from the PV panel and of its voltage is studied.The theoretical analysis is corroborated by frequency response measurements on a 230 W experimental inverter working from a single PV panel. The inverter is based on a Flyback DC–DC converter operating in discontinuous conduction mode (DCM) followed by a PWM full‐bridge single‐phase inverter. The time response of the whole system (DC–DC + inverter) is also shown to validate the concept. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.