Abstract

Modeling of biochemical phenomena is based on formal reaction kinetics. This requires the translation of the original reaction systems into sets of differential equations expressing the effects of the various reaction steps. The temporal behavior of the system is obtained by solving the differential equations. We present the main concepts on which the formal approach of these two problems is based and we show how the amount of work needed to treat them can be significantly reduced by using a mathematical program package ( Mathematica). Symbolic and numerical calculations can be performed with the programs presented and graphic presentations of the behavior of the system be obtained. The basic ideas are illustrated with three examples taken from the area of signal transduction and ion signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.