Abstract

A dynamic combustion model (DCM) is proposed for model-based control synthesis design in an opposed-piston free-piston engine (FPE). The DCM combines a modified triple Wiebe function with an artificial neural network (ANN), and considers the effects of engine variables such as cylinder wall temperature, fuel injection quantity and ignition timing. Firstly, it was proved by algebraic analysis that the triple Wiebe function can well describe the three combustion stages of the FPE. The ANN was then trained using the data obtained through CFD simulations at different operating points, with the aim of predicting combustion parameters based on engine variables. After the model was calibrated, it was verified by the test results from a prototype. Furthermore, this model was used to investigate combustion control strategies for cold start and stable operation. The results showed that the DCM has high precision and can simulate the complex combustion process under a wide range of FPE conditions, and is a favorable tool to make control strategies without experiments, especially in the cold start phase. Unlike general combustion modeling methods, this study provides a cost-effective way to build such a model for controller design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.