Abstract

Boring bar vibration is a common problem during internal turning operations and is a major problem for the manufacturing industry. High levels of boring bar vibration generally occur at frequencies related to the first two fundamental bending modes of a boring bar. This is the first of two companion papers that summarize the theoretical and experimental work carried out concerning modeling of dynamic properties of boring bars. This paper introduces the Timoshenko beam theory for the modeling of clamped boring bars. Also, the traditional Euler-Bernoulli beam theory is applied. These continuous system methods have been utilized to produce fixed-free beam models of the clamped boring bar. In order to improve accuracy of dynamic models of clamped boring bars, the modeling of the boring bar clamping is addressed by means of multi-span beam models with pinned boundary conditions. The derived boring bar models have also been compared with results obtained by means of experimental modal analysis, conducted on the actual boring bar clamped in a lathe. The multi-span beam boring bar models display higher correlation with experimental modal analysis results as compared to fixed-free beam models. For the fixed-free beams the Timoshenko model results in the highest correlation with the experimental results. On the other hand, the interval in frequency and the orientation of the two fundamental modes demonstrate differences, particularly between the continuous system models and the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.