Abstract

Lithium bromide absorption refrigeration system (ARS) is promising in utilizing industrial exhaust heat and improving energy efficiency. ARS consists of a generator, absorber, condenser, evaporator, solution heat exchanger, pump, and valves. To better operate ARS in a changing environment, it is essential to conduct dynamic modeling and analysis, which might be challenging and cumbersome with conventional modeling tools. Object-oriented, acausal modeling language Modelica can effectively address the modeling limitations on this multi-domain energy system, which provides an opportunity for rapid prototyping and dynamic modeling. Therefore, a customized Modelica library for dynamic modeling of the single-effect lithium bromide ARS is developed. Specifically, the dynamics of the main components including the generator, absorber and heat exchangers are modeled based on the mass/energy/momentum conservation laws. To capture the alteration of the medium state, the finite volume method is adopted in the modeling of heat exchangers. The model is well-validated under on-design and off-design conditions. Then, energy analysis is conducted to find the optimal working point. The COP reaches the maximum value of 0.793 when hot/cold water flowrate is 0.9 m3/h and 3 m3/h. And exergy analysis supports the above analysis from the perspective of the second law. At last, dynamic responses of the hot/cold water flowrate/temperature are investigated. Dynamic simulation reveals the response rapidity of variables, strong coupling, and different transient trends (overshoot or initial inverse). Additionally, the maximum/minimum vapor quality at the evaporator/condenser outlet is 1.005/0.022.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call