Abstract

Cracks have a significant impact on the stability of rotating machinery. However, most studies focus on rotating machinery with only one crack. This paper discusses the influence of two cracks on the stability of a flywheel rotor-bearing system. In this study, the dynamic models of vertically placed flywheel rotor-bearing system with two open cracks and two breath cracks are established using the finite element method (FEM). Floquet theory is used to calculate the stability of the system and the influence of depth and positions of cracks are analyzed. The results show that breathing cracks cause more unstable regions than open cracks, and the range of rotating speeds over which the rotor is unstable increases with increasing crack depth. In addition, it is observed that when the crack locations are adjacent, the unstable region will become very large, covering most of the crack depth range and speed range, making the rotor extremely unstable. Besides, the bearing stiffness causes an offset in the unstable regions, whereas the damping influences the instability value of the rotor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.