Abstract

The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interactions between different controllers of the wind farm and MMC stations, which have not been properly examined in the existing literatures. This paper presents a dynamic modeling approach for small signal stability analysis of PMSG-based wind farms with a MMCHVDC system. The small signal model of the study system is validated by the comprehensive electromagnetic transient (EMT) simulations in PSCAD/EMTDC. Then the eigenvalue approach and participation factors analysis are utilized to comprehensively evaluate the impact of different controllers, system's parameters and the circulating current suppressing controller (CCSC) on the small signal stability of the entire system. From eigenvalue analysis, it is revealed that as the output active power of the wind farm increases within the rated range, the overall system will exhibit a sub-synchronous oscillation (SSO) instability mode, an extremely weak damping mode, and a low frequency oscillation instability mode. From participation factors analysis, it is observed that the SSO mode and weak damping mode are primarily related to the internal dynamics of the MMC, which can be suppressed or improved by CCSC. It is determined that the low frequency oscillation mode is primarily caused by the interactions between the phase locked loop (PLL) control of the wind farm and the voltage and frequency (V-F) control of the MMC station. The analysis also depicts that the larger proportional gain value of the V-F control of the MMC station and smaller PLL bandwidth of the wind farm can enhance the small signal stability of the entire system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call