Abstract

In industrial smelters, sulfuric acid is manufactured using the elemental sulfur in a series of three-unit operations: elemental sulfur oxidation, sulfur dioxide catalytic conversion, and sulfur trioxide absorption. The sulfur oxidation, which is the basic step in this process, is generally performed under a sulfur combustion furnace that ensures the production of the process gas stream, which will be the main supply stream to the other unit operations. In this paper, a dynamic model is developed based on the fundamental mass and energy balance, including the sulfur oxidation and the dynamic flow behavior aspects within the furnace. The obtained model is simulated in the Matlab/Simulink environment and data from an industrial plant were used to validate the model. The simulation results and the plant measurement comparison showed an accuracy of 96%, with a mean absolute error of 16.12 °C and a root mean square error of 23.27 °C. Afterwards, the effect of different operating conditions and disturbance parameters on the sulfur combustion furnace performance were studied. Finally, the relationship and a correlation between the temperature and sulfur dioxide molar fraction at the outlet of the furnace were investigated for industrial use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call