Abstract

In this paper, the process of pushing rough cylindrical micro/nanoparticles on a surface with an atomic force microscope (AFM) probe is investigated. For this purpose, the mechanics of contact involving adhesion are studied first. Then, a method is presented for estimating the real area of contact between a rough cylindrical particle (whose surface roughness is described by the Rumpf and Rabinovich models) and a smooth surface. A dynamic model is then obtained for the pushing of rough cylindrical particles on a surface with an AFM probe. Afterwards, the process is simulated for different particle sizes and various roughness dimensions. Finally, by reducing the length of the cylindrical particle, the simulation condition is brought closer to the manipulation condition of a smooth spherical particle on a rough substrate, and the simulation results of the two cases are compared. Based on the simulation results, the critical force and time of manipulation diminish for rough particles relative to smooth ones. Reduction in the aspect ratio at a constant cross-section radius and the radius of asperities (height of asperities based on the Rabinovich model) results in an increase in critical force and time of manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.