Abstract

The objective of this paper is to study the dynamic modeling andsimulation of a tether-net/gripper system during an impact, while it isbeing deployed or retrieved by a winch on a satellite orbiting aroundearth. We stick to Tether-Net system but the analysis is applicable toTether-Gripper systems too. We assume that the net is deployed from thesatellite in orbit and the motion is restricted to the orbital plane.This net captures a second satellite and tows it. The motion of atether-net system can be broken down into the following phases: (i)Phase 1: Net is shot out from the satellite with the tether completelyslack, (ii) Phase 2: Net comes to a location where the tether is tautwhile the drum on the orbiter is locked, (iii) Phase 3: Drum is unlockedand the net moves with the tether, (iv) Phase 4: Net captures a body.The continua (tether) is modeled using mode functions and coordinates.The theory of impulse and momentum can be used to model Phases 1, 2, and4 of motion of the tether-net system. The dynamics of the motion of thesystem in phase 3 is characterized by differential and algebraicequations (DAEs). Matlab ODE solvers were used to solve these DAEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.