Abstract

This paper describes a dynamic heterogeneous one-dimensional model of trickle-bed reactors used for catalytic hydrotreating of oil fractions. The model considers the main reactions in the hydrotreating process of oil fractions: hydrodesulfurization, hydrodenitrogenation, and hydrodearomatization. The dynamic model was first validated using experimental data obtained in an isothermal pilot reactor during hydrotreating of vacuum gas oil over a commercial NiMo catalyst. Then, the model was applied to predict the dynamic behavior of a commercial hydrotreating reactor. Changes in concentration, partial pressure, and temperature profiles are obtained and discussed as a function of reactor axial position and time. The simulations obtained with the proposed dynamic model showed good agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call