Abstract

The landing airbag system, a mechanism composed of thin-walled structures, is designed to ensure the safe landing of a lander. To investigate the dynamic behavior of the landing airbag with large deformations, a novel modeling approach incorporating gas exchange and frictional contact is proposed. The Absolute Nodal Coordinate Formulation (ANCF) is introduced to model the flexible airbag. Subsequently, the gas parameters inside the airbag are calculated by integrating the Control Volume (CV) Method and the energy conservation equation. Additionally, based on master–slave techniques, a frictional contact formulation for the thin-walled structure and the rigid plane is presented, in which the normal contact force is estimated using the penalty method, and the velocity-based friction model accounting for the stick–slip transition characterizes the tangential friction. Furthermore, the bounding box technology is adopted to improve contact detection efficiency. A series of numerical examples are performed, which demonstrates the proposed model’s advantages in terms of precision and versatility. Finally, the landing dynamic characteristics of the airbag landing system for the small lunar lander are successfully revealed, and the parameter analysis for the airbag system is expected to aid the design optimization of the airbag cushioning system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call