Abstract

Various spacecraft missions have driven the need for lighter, stronger deployable structures, which help to hold instruments, such as a magnetometer, away from the spacecraft to avoid the disturbance caused by remanence of the spacecraft body. In this paper, we will present a type of deployable manipulator for small spacecraft, which is characterized by a small stowed volume, light weight and a large magnification ratio. Because the actual parameters of the deployable manipulator are all nonlinear, modeling of the manipulator becomes a key point. Considering the uncertainties in the model parameters, an approximate dynamic model with uncertain parameters is formulated by classifying the uncertainties into different types, including constant parametric, variable parametric and nonparametric uncertainties. Then, a robust adaptive control strategy is proposed to compensate for or reject these uncertainties separately; an output feedback controller is designed to reduce the errors between the desired and the real trajectories, an adaptive controller aims at compensating for constant parametric uncertainties and a robust controller is used to reject the variable parametric and nonparametric model uncertainties. Thus, a robust adaptive control strategy does not rely on the exact dynamic model and can completely compensate for or reject the effect of model uncertainties. Finally, the simulation results show that the proposed control law is perfectly adequate for the deployable manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.