Abstract

The nonlinear integro-differential equations, describing the transverse and rotational motions of a nonuniform Euler-Bernoulli beam with end mass attached to a rigid hub, are derived. The effects of both the linear and nonlinear elastic rotational couplings are investigated. The linear couplings are exactly accounted for in a decoupled Euler-Bernoulli beam model and their effects on the eigensolutions and response are significant for a small ratio of hub-to-beam inertia. The nonlinear couplings with a resultant stiffening effect are negligible for small angular velocities. A discretized model, suitable for the study of large angle, high speed rotation of a nonuniform beam, is presented. The optimal control moment for simultaneous vibration suppression of the beam at the end of a prescribed rotation is determined. Influences of the nonlinearity, nonuniformity, maneuvering time, and inertia ratio on the optimal control moment and system response, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call