Abstract

Once a doubly-fed induction generator (DFIG) is subjected to a disturbance by a change in the wind speed, the stator flux cannot change instantly. Under this condition, rotor back-EMF voltages reflect the effects of stator dynamics on rotor current dynamics, and have an important role on the oscillations of the rotor current. These oscillations decrease the DFIG system reliability and gear lifetime. Moreover, by focusing only on small signal analysis, the dynamic damping performance immediately following such disturbances is often degraded. Additional improvement in performance will be achieved if discrete Fourier transform (DFT) is used to quantify damping characteristic of the rotor current during changes of the operating points. This paper introduces an optimization technique based on non-dominated sorting genetic algorithm-II (NSGA-II) incorporating DFT analysis to achieve better control performance for DFIG system stability. Considering small signal stability, the main purpose of the control system in the present paper is to increase the system damping ratio as well as to guarantee enough stability margin. Eigenvalue analysis and time-domain simulations have been presented to demonstrate that the proposed optimizing method yields better control performance in comparison with one designed using mere eigenvalue relocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.