Abstract

This paper studies the faster attitude stabilization problem of receiver aircraft during the refueling phase. Dynamic models of receiver aircraft subject to practical uncertainties and disturbances are established, where the uncertain inertia, the wind disturbance, the time-varying inertia, and the shift of the center of mass are explicitly considered. A faster finite-time stable system is preliminarily proposed and proved rigorously in comparison with the conventional fast finite-time stable system. Then, a nonsingular terminal sliding mode surface is synthesized to ensure a fast convergence rate. An adaptive faster finite-time controller is finally developed with the aircraft attitude stabilized into a small neighborhood of the origin with a faster convergence rate. Simulations are conducted to validate that the proposed solution can accomplish attitude stabilization maneuvers in a faster way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.