Abstract

The automotive industries currently face challenges such as emission limits, traffic congestion, and limited parking, which have prompted shifts in consumer preferences and modern passenger vehicle requirements towards compact vehicles. However, given the inherent limited width of compact vehicles, the potential risk of vehicle rollover is greater than that of regular vehicles. This paper addresses the safety concerns associated with vehicle rollover, focusing on narrow tilting vehicles (NTVs). Quantifying stability involves numerical indicators such as the lateral load transfer ratio (LTR). Additionally, a unique approach is taken by applying ZMP (zero moment point), commonly used in the robotics field, as an indicator of vehicle stability. Effective roll control requires a detailed analysis of the vehicle’s characteristic model and the derivation of lateral and roll dynamics. The paper presents the detailed roll dynamics of an NTV with a MacPherson strut-type suspension. A stability-enhancing method is proposed using a cascade structure based on the internal robust position controller and outer roll stability controller, addressing challenges posed by disturbances. Experimental verification using Simscape Multibody and CarSim validates the dynamic model and controller’s effectiveness, ensuring the reliability of the proposed tilting control for NTVs in practical scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call