Abstract

AbstractFlexible cables in cable-driven parallel robots (CDPRs) are easy to be excited and vibrate. Cable vibration will react on the end-effector, causing attitude deviation of the end-effector. The main objective of this study is to accurately model axially moving flexible cables and characterize the dynamic behaviors of associated compliant CDPRs. Firstly, a model for transverse vibration of the axially moving length-variable cable is developed. On this basis, an original nonlinear dynamic model of the CDPRs able to capture the vibration of the cables and the dynamics of the end-effector is proposed. Secondly, the frequency–amplitude relationship of the CDPR is obtained. Moreover, the significance of the excitation effect caused by the axially moving length-variable cables is demonstrated, by comparing the results with and without excitation effect at different frequencies. It turns out that, as the oscillation frequency of the end-effector increases, the end-effector and cables exhibit the dynamics process from steady state to unstable large-amplitude vibration and finally to stable small-amplitude vibration. This indicates that the dynamics of the CDPR exhibit non-linear characteristics, due to the influence of flexible cables. Finally, the proposed dynamic model of compliant CDPRs is validated by experiments performed in the laboratory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call