Abstract
This study presents a dynamic model of a passenger vehicle and analyzes its dynamic characteristics and responses. A dynamic vehicle model with seven degrees of freedom was established to analyze the behavior of a driving vehicle. The vehicle model had three degrees of freedom for the sprung mass’s motion and four degrees for the unsprung masses. For this model, the equations of motion were derived using Lagrange’s equation. To verify the model, the suspension deformations computed using the model were compared with those measured through three actual vehicle driving tests: the slalom, double lane change, and step steer tests. Furthermore, we investigated the effects of suspension stiffness, suspension damping, and anti-roll bar torsional stiffness on the dynamic characteristics and responses of the vehicle model. This study presented a new full-car model that can analyze a turning vehicle’s behavior in response to changes in the steering angle input. The developed dynamic vehicle model may help vehicle designers predict the dynamic responses of a vehicle through simulation without performing a driving test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.