Abstract

Morphings are usually used for aircrafts to achieve a better performance in variable environment, whereas this paper focuses on how to achieve a trajectory-attitude separation control effect with an active morphing strategy. Aimed at this target, a systemic work, including modeling, linearization, and control, is presented. An accurate nonlinear dynamic model of morphing aircraft is built with centroid dynamic equations, of which all the additional terms that stem from morphing are expatiated for gull-wing aircraft. Then, a linear parameter varying (LPV) approach is applied to linearize the equations for a controller design. A state feedback with a feedforward ${\mathcal {H}_\infty }$ control approach for an LPV system is proposed in this paper and is applied to the attitude control of gull-wing aircraft. Based on the stabilized aircraft attitude, a dynamic inversion control approach for the trajectory channels with active morphing is designed. The nonlinear simulation cases validate the feasibility of trajectory-attitude separation control with active morphing, as well as the performance of the control approach proposed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.