Abstract

Double mechanical shafts seals with gas lubrication constructions are widely used in modern machine engineering for sealing the centrifugal machines, pumping aggressive, cryogenic substances and the melts. These constructions mainly use creating and maintaining a stable value for gas-dynamic method and the special microgrooves to draw the barrier gas into sealing gap are shaped to draw the barrier gas into the sealing gap. This article deals with the mathematical model of the pulse gas-barrier mechanical seal dynamics that synchronically use both gas-static and gas-dynamic methods of maintaining the contactless mode of operation, and is out of the disadvantages inherent for seals with microgrooves. The aim of this work is to develop a mathematical model of pulse seal functioning dynamics. The object of the research is the workflow of the seal. Іt is necessary to complement the existing method of pulse seals parameters calculation, and propose a methodology of operation gap pressure distribution calculation for achieve the objectives of the study. This model applies the numerical boundary element method, which allows to determine the pressure distribution in the operation gap due to the Reynolds equation. The model can be used to define the response of the movable face ring for the harmonic changes of external influences as well as for the frequencies risky range identification and for selecting such parameters of the seal where the movable ring oscillation amplitude would not be exceed by the allowable limits

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.