Abstract

The Weibullian-log logistic (WeLL) inactivation model was modified to account for heat adaptation by introducing a logistic adaptation factor, which rendered its "rate parameter" a function of both temperature and heating rate. The resulting model is consistent with the observation that adaptation is primarily noticeable in slow heat processes in which the cells are exposed to sublethal temperatures for a sufficiently long time. Dynamic survival patterns generated with the proposed model were in general agreement with those of Escherichia coli and Listeria monocytogenes as reported in the literature. Although the modified model's rate equation has a cumbersome appearance, especially for thermal processes having a variable heating rate, it can be solved numerically with commercial mathematical software. The dynamic model has five survival/adaptation parameters whose determination will require a large experimental database. However, with assumed or estimated parameter values, the model can simulate survival patterns of adapting pathogens in cooked foods that can be used in risk assessment and the establishment of safe preparation conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.