Abstract

Hydrogen production by electrolysis is emerging as one of the most promising ways to meet future fuel demand; likewise, the development of models capable of simulating the operation of electrolysis devices is indispensable in the efficient design of power generation systems, reducing manufacturing costs and resources savings. The nonlinear nature of the Artificial Neural Network (ANN) plays a key role at the development of models for predicting the performance of complex systems. The behavior of a Polymer Electrolyte Membrane (PEM) Electrolyzer of three cell stack (100 cm2 of active area) was modeled successfully using a Multilayer Perceptron Network (MLP). This dynamic model has been trained to learn the internal relationships that govern this electrolysis device and predict its behavior without any physical equations. The electric current supply and the operation temperature were used as input vector able to predict each cell voltage behavior. A reliable accuracy (< 2%) was reached in this work after comparing the single cell performance of the real electrolyzer versus the ANN based model. This predictive model can be used as a virtual device into a more complex energy system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.