Abstract

The tooth surface friction is one of the main sources of gear vibration and noise. The current challenging problems in research of a helical gear pair dynamics considering tooth surface friction include the following: (1) Calculation accuracy of the tooth surface friction factor needs to be improved. (2) The meshing process of a helical gear pair has not been fully taken into account in a dynamic model. To solve these problems, a dynamic model of a helical gear pair considering tooth surface friction is proposed in this article. First, based on the tooth contact analysis and loaded tooth contact analysis of a helical gear pair, excitation of time-varying meshing stiffness, the sliding friction coefficient on tooth surface, and the arm of friction force are preliminarily calculated. Second, the dynamic model of a helical gear pair considering tooth surface friction is built and solved, in which the dynamic meshing force/speed/displacement is calculated. The sliding friction coefficient on tooth surface, arm of friction force, and dynamic equations form a coupled system. By decoupling calculation, the model system equations are solved. Finally, an example is presented to verify the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.