Abstract

In this paper, a new systematic approach for stability analysis and controller design of nonlinear solar photovoltaic (PV) power system is proposed. Based on a nonquadratic Lyapunov function (NQLF), a model-based dynamic nonparallel-distributed compensation (non-PDC) controller and descriptor representation, the problem of the output tracking is formulated in terms of linear matrix inequalities (LMIs). Furthermore, some slack LMI variables are introduced in the problem formulation which lead to more relaxed conditions. Finally, to illustrate the merits of the proposed approach, it is applied to a PV power system in which the reference voltage is calculated from the maximum power point tracking (MPPT) method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.