Abstract

The problems of a flexible link manipulator are uncertainties and parametric nonlinearities. This paper presents design and development of a robust control based on linear quadratic regulator (LQR) for a flexible link manipulator. System performances were evaluated in terms of input tracking capability of hub angular position response, end-point displacement, end-point residual and hub velocity. For the controller of the system, LQR was developed to solve flexible link robustness and input tracking capability of hub angular position. The results achieved by the proposed controller are compared with conventional PID, to substantiate and verify the advantages of the proposed scheme and its promising potential in control of a flexible link manipulator. The robust control presented faster settling time and smaller overshoot responses and tracking performances of the proposed controller compared with PID controllers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.