Abstract

Current design constraints have encouraged the studies of aeroacoustic fields around compressible jet flows. The present work addresses the numerical study of unsteady turbulent jet flows as a preparation for future aeroacoustic analyses of main engine rocket plumes. An in-house large eddy simulation tool is used in order to reproduce high fidelity results of compressible jet flows. The large eddy simulation formulation is written using a second order numerical scheme for a finite difference spatial discretization. Numerical simulations of perfectly expanded jets are performed and the results are compared to the literature. Dynamic mode decompositions (DMD) of the jet flow, using large size three-dimensional snapshots, are performed. Three variables are analyzed, namely, the velocity magnitude, the vorticity magnitude and the divergence of velocity. In particular, two frequencies are identified and they are linked to flow structures observed in experiments performed by other authors in the literature. The spatial shapes of the corresponding dynamic modes are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.