Abstract

It has been well established that high mobility group A1 (HMGA1) proteins act within the nucleus of mammalian cells as architectural transcription factors that regulate the expression of numerous genes. Here, however, we report on the unexpected cytoplasmic/mitochondrial localization of the HMGA1 proteins within multiple cell types. Indirect immunofluorescence, electron microscopic immunolocalization, and Western blot studies revealed that, in addition to the nucleus, HMGA1 proteins could also be found in both the cytoplasm and mitochondria of randomly dividing populations of wild-type murine NIH3T3 cells and transgenic human MCF-7 breast cancer epithelial cells expressing a hemagglutinin tagged-HMGA1a fusion protein. While the molecular mechanisms underlying these novel subcellular localization patterns have not yet been determined, initial synchronization studies revealed a dynamic, cell cycle-dependent translocation of HMGA1 proteins from the nucleus into the cytoplasm and mitochondria of NIH3T3 cells. Furthermore, preliminary functionality studies utilizing a modified “chromatin” immunoprecipitation protocol revealed that HMGA1 retains its DNA binding capabilities within the mitochondria and associates with the regulatory D-loop region in vivo. We discuss potential new biological roles for the classically nuclear HMGA1 proteins with regard to the observed nucleocytoplasmic translocation, mitochondrial internalization, and regulatory D-loop DNA binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call