Abstract

In a wireless sensor network (WSN), finding the optimal route from each node to the sink is not a straightforward task because of the distributed and dynamic characteristics of the network. For instance, the network suffers frequent changes because the channel quality varies over time and the nodes can leave or join the network at any moment. In order to deal with this variability, we propose the Dynamic Gallager-Humblet-Spira (DGHS) algorithm that builds and maintains a minimum spanning tree for distributed and dynamic networks, and we have found that DGHS reduces the number of control messages and the energy consumption, at the cost of a slight increase in the memory size and convergence time. This paper presents a detailed description of the different stages of the DGHS algorithm (neighbor discovery, tree construction and data collection), an in-depth analysis of extensive results that validates our proposal, and an exhaustive description of the GHS limitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.