Abstract

Virtual Reality (VR) content is gaining popularity and allowing users to immerse themselves in a new world over the Internet. However, the high-demand for resources and the low latency requirements of VR services require changes in the current 5G networks to deliver VR with quality assurance. Microservices present a suitable model for deploying services at different levels of a 5G fog computing architecture for managing traffic and providing Quality of Experience (QoE) guarantees to VR clients. However, finding the most suitable fog node to allocate microservices for VR clients in QoE-aware 5G scenarios is a difficult task. This article proposes a QoE VR-based mechanism for allocating microservice dynamically in 5G architectures, called Fog4VR. Fog4VR determines the optimal fog node to allocate the VR microservice based on delay, migration time, and resource utilization rate. This article also presents the INFORMER, an integer linear programming model aiming to find the optimal global solution for microservice allocation. Results obtained with INFORMER serve as a baseline to evaluate Fog4VR in different scenarios using a simulation environment. Results demonstrate the efficiency of Fog4VR compared to existing mechanisms in terms of cost, migration time, fairness index, and QoE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.