Abstract

Modern distribution systems energized by inverter-interfaced distributed generators (DGs) operate as coupled cyber-physical networks (C/P-networks), where the controllable components in the P-network are coordinated through the C-network. The concept of dynamic microgrids (MGs) operation has been adopted to enable distribution system autonomous operation with varying electric boundaries. To further enhance the system operation resiliency and flexibility, dynamic MGs operation with reconfigurable C/P-networks is discussed in this article. An evaluation framework is proposed to assess the operational feasibility of distribution feeders with multiple inverter-based dynamic MGs and come out with possible restoration solutions in the context of cross-layer C/P-network reconfiguration. Furthermore, distributed controllers are developed for components with different operating characteristics to realize seamless system topology variations and provide coordinated secondary regulation in various operation modes. The proposed evaluation framework, along with the developed distributed controller, has been validated using a hardware-in-the-loop (HIL) real-time CPS testbed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call