Abstract

Of late, microgrids are getting a lot of attention, not just to support national security at military bases, but also to provide more resilient power supplies at other types of facilities, to allow for increased penetration of renewables, and other reasons. College campuses, military bases, and even corporate campuses are exploring microgrid options. This has spurred creation of new technologies and control mechanisms that allow these systems to operate in a grid-connected mode and also independently for extended periods of time. In this presentation, we propose a radical new concept: a top-down breakup of the distribution grid into an interconnected set of microgrids. Such an architecture would dramatically change how utilities address storm response while also delivering utilities' other mandates. We call this the “dynamic microgrid”, a new concept that will move the microgrid from its present niche to a mainstream position. Dynamic microgrids have the potential to be a key element of the ultimate self-healing grid - the Holy Grail of the smart grid. They'd allow the grid to divide itself into smaller self-sustaining grids, which can then be stitched back to form the regular distribution grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.