Abstract

Microgrids (MGs) are promising solutions to improve power distribution system (PDS) resilience against natural disasters. However, the existing MG formation approaches based on the linearized Distflow (LinDistflow) model always demand MG roots and their corresponding topologies. This can result in an increased number of variables and constraints in the optimization problem, and deteriorate their computational performance. To this end, an adaptive LinDistflow model is proposed based on the single commodity flow model in graph theory in this paper. Specifically, we show that active and reactive powers can be represented as commodities, which are sent from one node to each of its adjacent nodes in the graph. Then, the power flow and nodal voltage calculation based on the commodity flow only requires adjacent node information of the original topology rather than various MG topologies caused by the dynamic deployment of mobile energy resources (MERs). Furthermore, by incorporating the adaptive LinDistflow model as constraints, a dynamic MG formation approach is proposed for resilient load restoration considering large-scale MER deployment. The problem is formulated as a mixed-integer nonlinear programming problem (MINLP). A linearization technique is proposed based on the propositional logic constraints. It employs the propositional logic that partitions the solution space into two separated regions. Accordingly, the region that the solution lies in can be selected linearly. The effectiveness of the proposed approach is demonstrated based on the IEEE 37-Node, 123-Node and 8500-Node Test Feeders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call