Abstract
Tensile tests were performed in situ on an ultrafine-grained (UFG) Al-Mg alloy using a micro-tensile module in a scanning electron microscope. The micro-strain evolution was tracked and measured using digital image correlation (DIC). A fine random speckle pattern was required to achieve high resolution and accuracy of strain measurement using DIC. To produce the speckle pattern, a patterning method was developed using electron beam lithography to deposit a gold speckle pattern. The nanoscale feature size of this gold pattern (45 nm) was useful for identifying the micro-strain among individual grains of the UFG Al-Mg alloy. Microstructural aspects of the UFG Al-Mg alloy were revealed by analysis of electron backscattered diffraction (EBSD) patterns. Finally, the effect of the UFG Al-Mg alloy microstructure on the nanoscale deformation mechanism was investigated by combining EBSD and DIC data in a contour map. This combined technique provides a method for direct measurement of micro-strain and is potentially useful for deformation studies of a wide range of nanostructured materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.