Abstract

Poplar trees are significant for both economic and ecological purposes, and the fall webworm (Hyphantria cunea Drury) poses a major threat to their plantation in China. The preliminary resistance assessment in the previous research indicated that there were differences in resistance to the insect among these varieties, with '2KEN8' being more resistant and 'Nankang' being more susceptible. The present study analyzed the dynamic changes in the defensive enzymes and metabolic profiles of '2KEN8' and 'Nankang' at 24 hours post-infestation (hpi), 48 hpi, and 96 hpi. The results demonstrated that at the same time points, compared to susceptible 'Nankang', the leaf consumption by H. cunea in '2KEN8' was smaller, and the larval weight gain was slower, exhibiting clear resistance to the insect. Biochemical analysis revealed that the increased activity of the defensive enzymes in '2KEN8' triggered by the feeding of H. cunea was significantly higher than that of 'Nankang'. Metabolomics analysis indicated that '2KEN8' initiated an earlier and more intense reprogramming of the metabolic profile post-infestation. In the early stages of infestation, the differential metabolites induced in '2KEN8' primarily included phenolic compounds, flavonoids, and unsaturated fatty acids, which are related to the biosynthesis pathways of phenylpropanoids, flavonoids, unsaturated fatty acids, and jasmonates. The present study is helpful for identifying the metabolic biomarkers for inductive resistance to H. cunea and lays a foundation for the further elucidation of the chemical resistance mechanism of poplar trees against this insect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.