Abstract

We report a comparative study of the dynamic melting of driven vortex lattices in magnetic field tilted (by θ = 36°) from the normal to the film surface and that of a driven Abrikosov lattice in untilted field (θ = 0). From the mode-locking (ML) resonance, we confirm that vortex lattices in tilted field are stretched in the tilt direction and that, with increasing dc velocity at ML, the shape and orientation of the driven lattice change. Associated with this structural change, the dynamic melting field at which the driven lattice melts also changes. Our results show that, regardless of the lattice shape and orientation, dynamic melting occurs as the shorter side of the distorted lattices reaches close to the side at which the isotropic lattice melts dynamically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call