Abstract

The relaxation paths for triphenylamine(TPA)-2,3-dicyanopyrazino phenanthrene(DCPP), which has a pull-push structure, were investigated via steady-state, time-resolved spectroscopy involving transient absorption and time-correlated single photon counting. By changing the solvent polarity we found that an intramolecular charge transfer(ICT) state acting as a “bright” state was responsible for the fluorescence character of TPA-DCPP. Meanwhile, a “dark” state gradually appeared and competed with the ICT state. This was likely to be responsible for the polarity-dependent evolution of fluorescence intensity and fluorescence lifetime. The temperature-dependent fluorescence character of the TPA-DCPP in toluene exhibited ICT processes at high temperatures prior to the relaxation path from the initial excited state to the ground state. Our results provide useful insight into the optoelectronic properties of these kinds of molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.