Abstract

Dynamic mechanical thermoanalysis (DMTA) was conducted on compacted specimens of calcium silicate hydrates (C-S-H), 1.4 nm tobermorite, jennite, and compacted hydrated Portland cement paste powders, as well as hardened cement paste. The synthetic silicates are key elements for compositional models of the hydrated calcium silicates present in cement paste. The study focuses on the nanostructural effects due to the removal of water from the 11 % RH condition. The DMTA results (E′ and tan∂ versus temperature curves) in the 25–110 °C range mimicked those of DMA (E′ and tan∂ versus mass loss curves) conducted at room temperature for C-S-H and cement paste. In addition, the DMTA curves for 1.4 nm tobermorite and jennite in the temperature range 110–300 °C were sensitive to phase changes including the transition of 1.4 nm tobermorite to 1.1 nm tobermorite and other forms, as well as the transition of jennite to metajennite. The DMTA curves of a 50/50 mixture of 1.4 nm tobermorite and jennite exhibit similarities and differences to that of hydrated cement paste that are influenced by porosity and the amorphous nature of C-S-H in the cement paste. The study provides useful data for evaluating Taylor’s concept of a possible tobermorite-jennite model for the C-S-H present in hydrated cement paste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call