Abstract

AbstractWe carried out dynamic mechanical measurements to investigate three different examples of block copolymers: styrene–isoprene diblock copolymers and styrene–butadiene–styrene and styrene–(styrene butadiene)–styrene triblock copolymers. Isochronal and isothermal measurements of the real and imaginary parts of the complex shear modulus were performed over wide ranges of temperature and frequency. The measurements showed the presence of an additional relaxation process appearing at temperatures higher than those of the glass relaxation of the polystyrene phase, which has been misinterpreted by some authors as an order–disorder transition. The frequency dependence revealed that this process was a relaxation process and did not belong to a first‐order transition. Moreover, the influence of crosslinking via dicumylperoxide was measured, and we constructed complete master curves to confirm the presence of two relaxation processes. The high‐temperature relaxation process was strongly suppressed by crosslinking. Therefore, it was possible to detect the glass relaxation process of the polystyrene phase in a precise manner. The results were compared with those of homopolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2198–2206, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.