Abstract

The quasi-static and dynamic compressive mechanical behaviors of two kinds of fiber reinforced SiC-matrix composites including 2D-C/SiC and 2D-SiC/SiC were investigated. Their compressive behaviors of materials at room temperature and strain rate from 10-4 to 104 /s were studied. The fracture surfaces and damage morphology were observed by scanning electron microscopy (SEM). The results showed that the dynamic failure strengths of the two kinds of fiber reinforced SiC-matrix composites obey the Weibull distribution. The Weibull modulus of the two materials were 13.70 (2D-C/SiC) and 5.66 (2D-SiC/SiC), respectively. It was found that the two kinds of fiber reinforced ceramic matrix composites presented a transition from brittle to tough with the decrease of strain rate. The 2D-SiC/SiC materials demonstrated a more HYPERLINK "http://dict.cnki.net/dict_result.aspx?searchword=%e6%98%be%e8%91%97%e7%9a%84&tjType=sentence&style=&t=remarkable"significant strain rate sensitivity and smoother fracture surface compared to the 2D-C/SiC composites, implying that the former composites present brittle features. This was because the SiC/SiC composites possessed high bonding strength in interface of fiber/fiber and fiber/matrix is very strong.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.