Abstract
Multifrequency dynamic mechanical analysis (DMA) data were obtained for molded poly(oxymethylene) (POM) and its blends from-150°C to 150°C. Because of the high crystallinity, the assignment of the glass transition in POM has been controversial in the literature. Low and high glass transition temperature (T g) phenolated compounds, including poly(vinyl phenol), were found to be miscible with POM. The shift of the β transition in the POM blends favors an assignment of the β transition detected at −3°C(1 Hz), not the −80°C γ transition, as the T g in semicrystalline POM because the latter is invariant with diluent. The peak at the β transition in pure POM is weak and can only be seen clearly by DMA measurements on samples that have not “aged” at ambient temperature. This is further evidence that the β transition arises from a cooperative glass-transition-like motion. The γ transition is not influenced by aging because it is due to a concerted localized main chain motion. The β transition of an oriented POM filament can be seen in the DMA flexural loss spectrum at-18°C (1 Hz), but not in a tensile loss spectrum. The broad a relaxation was detected at about 110°C (1 Hz) in molded POM and its blends, while it was shifted to about 135°C in the higher crystallinity, oriented system. The α peak is also independent of diluent, consistent with a crystalline origin for this transition, as was proposed earlier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.