Abstract

AbstractThe dynamic mechanical properties of PBX1314 and its binder are systematically investigated. Based on split‐Hopkinson pressure bar technique, the experimental results of PBX1314 and its binder are obtained under high strain rate. A constitutive theory is developed for modeling the mechanical response of dynamically loaded PBX1314 binder. To accomplish this aim, the PBX1314 binder is assayed by relaxation tests at different temperatures, in order to apply the time‐temperature superposition principle (TTSP) and raise the master curves, based on WLF equation. The rate dependence of mechanical response of the polymer binder is accounted for by a generalized Maxwell viscoelasticity model. The basis for this work is Mori and Tanaka's effective medium theory. The grains in this analysis are assumed to be spherical and uniformly distributed in the binder. The relaxation constitutive relations of particulate reinforced composites are investigated by Laplace transformation and the corresponding principle. The theoretical prediction coincides with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.