Abstract

AbstractDepending upon the fiber material, some of the experimental variables can have a profound effect on the dynamic tensile modulus vs. temperature data. With the use of an experimental fiber (25°C < Tg < 75°C; Tm > 220°C; hot stretched), the effect of several variables, e.g., moisture/volatiles, annealing/relaxation, frequency (strain rate), pretension, and % strain on the modulus retention term [(E100°C/E25°C) × 100] have been studied. Of these variables, pretension and especially % strain dramatically increase the modulus retention and this effect is attributed to the elastic orientation under force (EOF), i.e., it exists only in the presence of tensile forces and is reversible. Such an effect was insignificant for Kevlar (Tg − 375°C) and absent for steel wire. Dynamic modulus measurements at 25°C using sonic techniques also support the EOF phenomenon in polyethylene yarns (Tg ∼ −30°C) but not in Kevlar polymide yarns (Tg ∼ 375°C).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.