Abstract
The dynamic mechanical behavior and energy absorption characteristics of nano‐enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber‐glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and polyurethane (PU) resin systems (FG/PE/VACNT and FG/PU/VACNT) are investigated and compared with the baseline materials, FG/PE and FG/PU (i.e., without VACNT). A Dynamic Mechanical Analyzer (DMA) was used for obtaining the mechanical properties. It was found that FG/PE/VACNT exhibited a significantly lower flexural stiffness at ambient temperature along with higher damping loss factor over the investigated temperature range compared to the baseline material FG/PE. For FG/PU/VACNT, a significant increase in flexural stiffness at ambient temperature along with a lower damping loss factor was observed with respect to the baseline material FG/PU. A Split Hopkinson Pressure Bar (SHPB) was used to evaluate the energy absorption and strength of specimens under high strain‐rate compression loading. It was found that the specific energy absorption increased with VACNT layers embedded in both FG/PE and FG/PU. The compressive strength also increased with the addition of VACNT forest layers in FG/PU; however, it did not show an improvement for FG/PE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.