Abstract

Most complex network analyses of transportation systems use simplified static representations obtained from existing connections in a time horizon. In static representations, travel times, waiting times and compatibility of schedules are neglected, thus losing relevant information. To obtain a more accurate description of transportation networks, we use a dynamic representation that considers synced paths and that includes waiting times to compute shortest paths. We use the shortest paths to define dynamic network, node and edge measures to analyse the topology of transportation networks, comparable with measures obtained from static representations. We illustrate the application of these measures with a toy model and a real transportation network built from schedules of a low-cost carrier. Results show remarkable differences between measures of static and dynamic representations, demonstrating the limitations of the static representation to obtain accurate information of transportation networks.

Highlights

  • Complex networks theory studies global properties of systems composed by a large quantity of interconnected elements

  • The most usual way to construct a transportation network is to collect information about existing connections on a time horizon, and consider a pair of nodes linked by an edge if there is at least a direct connection between them

  • The aim of our paper is to define a set of dynamic measures that take into account the specificities of transportation networks

Read more

Summary

Introduction

Complex networks theory studies global properties of systems composed by a large quantity of interconnected elements. Modelling those systems as complex networks, where the elements are the nodes and the links the connections among them, we are able to gain insight into system’s structural properties, and to learn how those systems grow and evolve. Global structural properties are described using network measures: for instance, we can say that a network has the small world property if it has a large average clustering coefficient and a small average path length [1]. To account for this, we define parameters as degree for nodes (the number of connections to the node) and betweenness for nodes and edges (nodes and edges of high betweenness are frequently present in shortest paths) as centrality measures of network elements. Node and betweenness are the most frequent measures of centrality, other measures have been defined in the literature [4, 5]

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.