Abstract
The ultimate performance of flow-based measurements in microfluidic systems is currently limited by their accuracy at the nanoliter-per-minute scale. Improving such measurements (especially in contexts that require continuous monitoring) is challenging because of constraints associated with shrinking system geometries and limitations imposed by making precise measurements of smaller quantities in real time. A particularly interesting limit is the relative uncertainty as flow approaches zero, which diverges for most measurement methods. To address these problems, we have developed an optofluidic measurement system that can deliver and record light in a precise interrogation region of a microfluidic channel. The system utilizes photobleaching of fluorophore dyes in the bulk flow and can identify zero flow to better than 1 nL/min absolute accuracy. The technique also provides an independent method for determining nonzero flow rates based on a robust scaling relationship between the fluorescence emission and flow. Together, these two independent approaches enable precise measurement of flow to within 5% accuracy down to 10 nL/min and validation of flow control to within 5% uncertainty down to 2 nL/min. We also demonstrate that our technique can be used to extend a calibrated flow meter well below its specified range (e.g., 500 nL/min) and to make dynamic measurements of similar relative uncertainties to the calibrated meter, which would have otherwise expanded significantly in this regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.