Abstract

We demonstrate for the first time to our knowledge a dynamic measurement for an electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. It is well known that the wavelengths of the transmitted peaks of the NLC Fabry-Perot etalon depend on the applied electric field. The change in the effective refractive index of the NLC is measured according to the applied static electric field. The effective refractive index decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. In addition, we measure the frequency of the dynamic variation in the electric field using a high-speed wavelength-swept laser. By measuring the modulation frequency of the transmitted peaks in the temporal domain, the frequency of the amplitude-modulated electric field can be estimated. The frequencies of the measured dynamic variations show a close agreement with the amplitude modulation frequencies of the induced electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.