Abstract

This paper studies a continuous-time dynamic mean-variance portfolio selection problem with the constraint of a higher borrowing rate, in which stock price is governed by a constant elasticity of variance (CEV) process. Firstly, we apply Lagrange duality theorem to change an original mean-variance problem into an equivalent optimization one. Secondly, we use dynamic programming principle to get the Hamilton-Jacobi-Bellman (HJB) equation for the value function, which is a more sophisticated nonlinear second-order partial differential equation. Furthermore, we use Legendre transform and dual theory to transform the HJB equation into its dual one. Finally, the closed-form solutions to the optimal investment strategy and efficient frontier are derived by applying variable change technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.