Abstract

Future state projection is an important prerequisite for the maritime autonomous surface ships (MASS) to initiate a collision-avoidance manoeuvre. Forecasts of MASS′ trajectories and motions are fundamentally based on the vessel's mathematical manoeuvring model, which is also referred to as the hydrodynamic digital twin nowadays. Using the benchmark container ship KCS as an object of study, this paper adopts a 3-DOF modular-type manoeuvring (MMG) model to predict the vessel trajectories in calm water and under the presence of steady current and regular waves. The current effects are treated as additional ship over water speed, while the wave effects are considered by superimposing the mean second-order wave drift loads to the calm water hull hydrodynamics. Concurrently, selected manoeuvring cases including turning circle and zig-zag are solved using the unsteady Reynolds-averaged Navier-Stokes (uRANS) equations based CFD method, where a hierarchy of overset grids is utilised to allow self-propulsion and active rudder steering. The computed vessel trajectories and velocities are compared with that predicted by the MMG model and show reasonable agreement. The wave loads experienced by the vessel when turning in waves are also analysed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.