Abstract

Abstract Traffic congestion is a major threat to transportation sector in every urban city around the world. This causes many adverse effects like, heavy fuel consumption, increased waiting time, pollution, etc. and pose an eminent challenge to the movement of emergency vehicles. To achieve better driving we proceed towards a trending research field called Social Internet of Vehicles (SIoV). A social network paradigm that permits the establishment of social relationships among every vehicle in the network or with any road infrastructure can be radically helpful. This holds as the aim of SIoV, to be beneficial for the drivers, in improving the road safety, avoiding mishaps, and have a friendly-driving environment. In this paper, we propose a Dynamic congestion control with Throughput Maximization scheme based on Social Aspect (D-TMSA) utilizing the social, behavioral and preference-based relationships. Our proposed scheme along with the various social relationship types allocates green signal to maximize the traffic flow passing through an intersection. Simulation results show that the D-TMSA outperforms the existing work by achieving high throughput, lowering the total traveling time and reducing the average waiting time to better the flow of traffic based on their social attributes with each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.